JavaTM Platform
Standard Ed. 6

java.util.concurrent.locks
接口 ReadWriteLock

所有已知实现类:
ReentrantReadWriteLock

public interface ReadWriteLock

ReadWriteLock 维护了一对相关的,一个用于只读操作,另一个用于写入操作。只要没有 writer,读取锁可以由多个 reader 线程同时保持。写入锁是独占的。

所有 ReadWriteLock 实现都必须保证 writeLock 操作的内存同步效果也要保持与相关 readLock 的联系。也就是说,成功获取读锁的线程会看到写入锁之前版本所做的所有更新。

与互斥锁相比,读-写锁允许对共享数据进行更高级别的并发访问。虽然一次只有一个线程(writer 线程)可以修改共享数据,但在许多情况下,任何数量的线程可以同时读取共享数据(reader 线程),读-写锁利用了这一点。从理论上讲,与互斥锁相比,使用读-写锁所允许的并发性增强将带来更大的性能提高。在实践中,只有在多处理器上并且只在访问模式适用于共享数据时,才能完全实现并发性增强。

与互斥锁相比,使用读-写锁能否提升性能则取决于读写操作期间读取数据相对于修改数据的频率,以及数据的争用——即在同一时间试图对该数据执行读取或写入操作的线程数。例如,某个最初用数据填充并且之后不经常对其进行修改的 collection,因为经常对其进行搜索(比如搜索某种目录),所以这样的 collection 是使用读-写锁的理想候选者。但是,如果数据更新变得频繁,数据在大部分时间都被独占锁,这时,就算存在并发性增强,也是微不足道的。更进一步地说,如果读取操作所用时间太短,则读-写锁实现(它本身就比互斥锁复杂)的开销将成为主要的执行成本,在许多读-写锁实现仍然通过一小段代码将所有线程序列化时更是如此。最终,只有通过分析和测量,才能确定应用程序是否适合使用读-写锁。

尽管读-写锁的基本操作是直截了当的,但实现仍然必须作出许多决策,这些决策可能会影响给定应用程序中读-写锁的效果。这些策略的例子包括:

当评估给定实现是否适合您的应用程序时,应该考虑所有这些情况。

从以下版本开始:
1.5
另请参见:
ReentrantReadWriteLock, Lock, ReentrantLock

方法摘要
 Lock readLock()
          返回用于读取操作的锁。
 Lock writeLock()
          返回用于写入操作的锁。
 

方法详细信息

readLock

Lock readLock()
返回用于读取操作的锁。

返回:
用于读取操作的锁。

writeLock

Lock writeLock()
返回用于写入操作的锁。

返回:
用于写入操作的锁。

JavaTM Platform
Standard Ed. 6

提交错误或意见
有关更多的 API 参考资料和开发人员文档,请参阅 Java SE 开发人员文档。该文档包含更详细的、面向开发人员的描述,以及总体概述、术语定义、使用技巧和工作代码示例。

版权所有 2007 Sun Microsystems, Inc. 保留所有权利。 请遵守许可证条款。另请参阅文档重新分发政策